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Abstract The spatial distribution of atrophy in neurodegenerative diseases suggests that brain

connectivity mediates disease propagation. Different descriptors of the connectivity graph

potentially relate to different underlying mechanisms of propagation. Previous approaches for

evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation

and match predictions against late-stage atrophy patterns. We introduce the notion of a

topological profile — a characteristic combination of topological descriptors that best describes

the propagation of pathology in a particular disease. By drawing on recent advances in disease

progression modeling, we estimate topological profiles from the full course of pathology

accumulation, at both cohort and individual levels. Experimental results comparing topological

profiles for Alzheimer’s disease, multiple sclerosis and normal ageing show that topological profiles

explain the observed data better than single descriptors. Within each condition, most individual

profiles cluster around the cohort-level profile, and individuals whose profiles align more closely

with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new

insights into the biological mechanisms underlying pathology propagation in each disease.

Introduction
Evidence from neuroimaging suggests that the progression of brain changes in neurodegenerative

diseases may be mediated by brain connectivity. For example, atrophy patterns observed with MRI

suggest that different brain regions are systematically and selectively vulnerable to different neuro-

degenerative diseases, and that these atrophy patterns closely match known connectivity networks

(Iturria-Medina, 2013; Iturria-Medina and Evans, 2015; Raj et al., 2012; Seeley et al., 2009;

Zhou et al., 2012). The literature includes wide debate on the potential mechanisms underlying

pathogenic protein propagation, on the biology of protein aggregation and propagation, and of

selective vulnerability of neurons in neurodegenerative disease (see Soto and Pritzkow, 2018;
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Jucker and Walker, 2018; Fu et al., 2018 for recent reviews). Uncovering the precise relationship

between the topology of brain network connectivity and the pattern of pathology may provide clues

to the underlying mechanisms of propagation. Indeed, in Alzheimer’s disease (AD), Zhou et al.

(2012) attempt to explain the association between patterns of brain atrophy and connectivity in

terms of different topological descriptors: (1) centrality – the most active regions or ‘hubs’ are most

vulnerable (Buckner et al., 2009; Saxena and Caroni, 2011); (2) segregation – opposite to 1), the

most isolated nodes are most vulnerable (Appel, 1981; Salehi et al., 2006); (3) network proximity –

regions connected to disease epicenters are most vulnerable (Frost and Diamond, 2010;

Jucker and Walker, 2013; Prusiner, 1984); (4) cortical proximity – regions spatially adjacent to dis-

ease epicenters are most vulnerable. The authors relate these descriptors to distinct mechanisms of

pathology propagation: (1) centrality represents nodal stress, (2) segregation, trophic failure, (3) net-

work proximity, trans-neuronal spread, and (4) cortical proximity represents unguided diffusive prop-

agation. Thus, comparing patterns of pathology predicted by these different descriptors with those

observed in patient cohorts gives clues to which corresponding mechanisms are at play. Moreover,

as reviews (Soto and Pritzkow, 2018; Jucker and Walker, 2018; Fu et al., 2018) highlight, the

plausibility of those mechanisms extend similarly to the wider range of neurodegenerative

conditions.

Previous studies (Iturria-Medina, 2013; Iturria-Medina and Evans, 2015; Seeley et al., 2009;

Zhou et al., 2012; Saxena and Caroni, 2011; Buckner, 2005; Cope et al., 2018; Fornito et al.,

2015; Mancini, 2016) using functional or structural networks have focused on evaluating the ability

of each individual topological descriptor above to explain observed patient data with the goal of

identifying the single most likely mechanism of disease propagation. More generally, a variety of

mathematical models based on dynamical systems modeling (Raj et al., 2015; Raj et al., 2012;

Iaccarino et al., 2018; Weickenmeier et al., 2019; Mišić et al., 2015; Iturria-Medina et al., 2017;

Iturria-Medina et al., 2018) have been proposed for describing the temporal propagation of pathol-

ogy mediated by brain networks. They mostly enforce the trans-neuronal spread (or ‘prion-like’)

hypothesis of propagation via network proximity. These approaches have important methodological

limitations, which should prompt caution in their interpretation. Two key limitations are: i) the

approaches do not consider the possibility of multiple concurrent spreading mechanisms; ii) the eval-

uation of topological descriptors is performed using only cross-sectional data assumed to represent

end-stage atrophy patterns.

Regarding limitation (i), multiple distinct mechanisms are likely to contribute in diseases where

multiple proteinopathies are at play (such as amyloid and tau in AD; see for example

Iaccarino et al., 2018; Jones et al., 2016; Leal et al., 2018); in diseases exhibiting highly-variable

atrophy patterns (as in multiple sclerosis (MS); see Steenwijk et al., 2016); or in individual cases

where multiple pathologies co-exist, as for instance tau accumulation in Parkinson’s disease

(Irwin et al., 2013; Lei et al., 2010), or alpha-synuclein or TDP-43 in AD (Arai et al., 2009; Hamil-

ton, 2006; Spires-Jones et al., 2017; Attems and Jellinger, 2014). Also, associations between vas-

cular factors and neurodegenerative dementias such as AD are common (Kalaria, 2009;

Sweeney et al., 2018), which suggests contributions from multiple underlying mechanisms to the

observed pattern of pathology accrual (Attems and Jellinger, 2014). Further, in MS, retrograde

neurodegeneration secondary to focal damage from remote lesions, iron accumulation in the deep

gray matter and ‘virtual hypoxia’ in the hub regions could all potentially combine and contribute to

explain observed neurodegeneration (Trapp and Stys, 2009).

Regarding limitation (ii), considering only end-stage pathology severely limits sensitivity — like

trying to guess the plot of a movie after watching only the final scene (Oxtoby and Alexander,

2017). The emergence of data-driven disease progression models (DPMs) (Oxtoby and Alexander,

2017; Bilgel et al., 2016; Donohue et al., 2014; Eshaghi et al., 2018a; Firth et al., 2016;

Fonteijn et al., 2012; Iturria-Medina et al., 2016; Jedynak et al., 2012; Koval et al., 2017;

Li et al., 2019; Marinescu et al., 2019; Oxtoby et al., 2017; Oxtoby et al., 2018; Schiratti et al.,

2017; Venkatraghavan et al., 2017; Young et al., 2014) provides an opportunity to address limita-

tion (ii) by using the full trajectory of pathology accumulation to evaluate the influence of topological

descriptors. These techniques estimate the long-term temporal pattern of disease progression

directly from cross-sectional or short-term longitudinal data sets on the assumption of some degree

of commonality of progression over a patient cohort. In contrast to brute-force machine-learning

approaches (Hinrichs et al., 2011; Moradi et al., 2015; Nie et al., 2017) to predict progression,
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DPMs reveal the trajectory of temporal evolution of multiple biomarkers on a common timeline,

which can, in turn, provide an extra dimension for identifying informative topological descriptors

over and above using late-stage information alone.

In this paper, we set out to ameliorate the aforementioned limitations in network-based models

of neurodegenerative disease by revealing the combinations of topological descriptors that best

explain the temporal evolution of pathology. We introduce a new method that uses the Gaussian

Process (GP) Progression Model of Lorenzi et al. (2019) to assess candidate descriptors against the

full time course of the disease, rather than just late-stage pathology. Moreover, the method identi-

fies a characteristic combination for each disease that defines a novel disease-specific topological

profile. We extend this concept further to find personalized topological profiles for each individual

and demonstrate the consistency of individual profiles with the corresponding cohort profile as well

as characterize within-disease variability of individual topological profiles. We focus on patterns and

trajectories of atrophy accumulation informed by structural MRI and use three distinct data sets

across the spectrum of neurodegeneration (Alzheimer’s disease – AD, primary progressive multiple

sclerosis – PPMS, and broadly-healthy ageing represented by data collected from community-dwell-

ing ageing individuals – HA). We show that: a) a combination of topological descriptors consistently

explains the data better than the best single descriptor; b) the profiles differ substantially among

conditions; c) individual profiles cluster around corresponding cohort-level profiles, but only when

the profile is estimated from the full time course rather than end-stage only; and d) positioning of

individual profiles with respect to each cohort profile is associated with relevant clinical features,

thereby potentially benefiting early diagnosis and stratification.

Results
Figure 1 gives an overview of the methods used to compute topological profiles at both cohort and

individual levels: full details are provided in the Materials and methods section. In this section, we

show first that the GP Progression Model estimates trajectories of atrophy evolution that reflect

observed atrophy patterns in each cohort (AD, PPMS and HA). Secondly, we show that the topologi-

cal profiles derived from such atrophy evolution patterns are distinct for each condition and explain

observations better than profiles estimated when using end-stage data only, and better than single

topological descriptors. Further, we demonstrate that most individual profiles reflect their corre-

sponding cohort profile (and neurological condition), and that those that do not (‘outliers’) show clin-

ical characteristics of the topologically-nearest cohort.

Temporal patterns estimated by the GP progression model confirm
observed atrophy progression patterns
Figure 2, top row, shows the spatio-temporal evolution of the atrophy patterns in each cohort (AD,

PPMS and HA) estimated by the GP Progression Model over 41 bilateral regions of interest,

obtained by symmetrizing the 82 anatomical regions from the segmentation procedure in

Desikan et al. (2006) (see Materials and methods: Data description). Each panel shows four tempo-

ral stages sampled at uniform intervals according to the estimated disease time of the GP Progres-

sion Model (see Materials and methods: GP Progression Model). Each topological profile specifies

the rate of pathology accumulation in each area. So, while the rates are time-independent, they vary

spatially so that the pattern itself is time dependent. Figure 2—figure supplement 1 shows a higher

temporal resolution visualization of the same progressions. The regional trajectories and the individ-

ual time parameters estimated by the model are shown in Figure 2—figure supplement 2, Fig-

ure 2—figure supplement 3 and Figure 2—figure supplement 4.

In the AD cohort, the first regions to show atrophy are the superior temporal region and the hip-

pocampus, followed by the amygdala, the remaining temporal regions, the insular and the supramar-

ginal regions, and then the precentral and postcentral regions and the posterior lobe. The estimated

progression gradually involves the occipital lobe, the middle frontal region, and finally the remaining

subcortical areas, with thalamus and caudate last, which matches well-known atrophy progression

patterns observed in AD from post-mortem histology (Eshaghi et al., 2018b) and in-vivo disease

progression models (Donohue et al., 2014; Fonteijn et al., 2012; Hinrichs et al., 2011;

Desikan et al., 2006). In PPMS, the progression first involves some subcortical areas (caudate, thala-

mus, pallidum), followed by the superior parietal region, the remaining subcortical areas (amygdala,
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Figure 1. Overview of topological profile estimation. (a) We construct the average structural connectome from

Human Connectome Project (HCP) tractograms; (b) we compute topological descriptors on the structural

connectome and the progression pattern that corresponds to each; (c) we estimate the long-term atrophy

progression pattern and its variability within each condition, using GP Disease Progression Model on regional

volumes from T1-weighted MRI; (d) we estimate rates of progression for each individual from the cohort-level GP

progression model; (e) we estimate each topological profile (both cohort-level and individual) as the linear

combination of topological descriptors, with weights b, that best matches the observed progression rates. Those

profiles are then visualized in a low-dimensional projection of the space of topological descriptors.
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putamen, nucleus accumbens), few frontal regions (mostly middle- and orbito-frontal), the precen-

tral, and then the occipital and temporal lobes, which become abnormal later in the progression.

The dynamics of progression agree with recent results (Eshaghi et al., 2018a; Vinke et al., 2018),

obtained using a different DPM. In the HA cohort, we observe early involvement of the insula, the

superior and middle temporal lobes, the middle frontal, and the putamen. Subsequently, the amyg-

dala, hippocampus and nucleus accumbens are affected, the inferior temporal and more frontal

regions, followed by the parietal lobe and the cingulate. This agrees with other studies of volume

loss in normal aging (Narvacan et al., 2017; Watson et al., 2016; Akaike, 1974).

Distinct topological profiles for each neurological condition
The second row of Figure 2 shows the progression corresponding to the topological profiles that

best match the GP Progression Model, for each cohort. The topological profiles are sparse linear

combinations of nine network metrics, each representing one of five topological descriptors. They

are the four described in Zhou et al. (2012) – centrality, segregation, network proximity and cortical

proximity – and the constant progression descriptor, quantifying the extent to which the rate of atro-

phy remains constant throughout the progression (see Materials and methods: Network metrics).

Table 1 shows the weight of each metric in the profile for each condition that best explains the cor-

responding GP disease progression in Figure 2 top row. Weights with value below 0.10 are set to

zero in the final sparse linear combination defining the topological profiles; those weights are shown

in bold in Table 1.

Table 1 shows that the topological profiles for AD, PPMS and HA differ substantially. Specifically,

AD shows a concurrency of centrality metrics (40%) and network proximity (60%); PPMS shows a

Figure 2. Temporal evolution of brain loss in AD, PPMS and HA confirm known atrophy progression patterns, and the progression patterns

corresponding to the topological profiles for the three cohorts match the progression of atrophy better than the single best fitting topological

descriptor. Top row: 4D representation of the GP disease progression model for AD (left), PPMS (middle) and HA (right). Second row: 4D

representation of the progression pattern corresponding to the topological profile for AD (left) - a combination of centrality measures and network-

based proximity; PPMS (middle) – a combination of centrality, segregation and cortical proximity measures; and HA (right) - a combination of centrality,

cortical proximity, and constant progression. Third row: 4D representation of the progression pattern corresponding the single best fitting topological

descriptor for AD (left) - network proximity; PPMS (middle) - segregation; and HA (right) - cortical proximity. Each region’s color opacity is proportional

to the cumulative abnormality of each region (strong blue means strongly atrophied), and time increases from left to right. AIC is the Aikake

Information Criterion for the fit to the observed disease progression (lower is better).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Fine-grained representation of Figure 2, with 12 stages.

Figure supplement 2. Biomarker trajectories, with standard deviations and measurements for the AD cohort.

Figure supplement 3. Individual trajectories, with standard deviations and measurements, for the PPMS cohort.

Figure supplement 4. Individual trajectories, with standard deviations and measurements, for the HA cohort.
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more complex profile with presence of centrality (35%), segregation (45%) and cortical proximity

(20%); HA matches a combination of centrality (25%), cortical proximity (60%) and constant progres-

sion (20%). Credible intervals in the topological profile weights, shown in parentheses in Table 1,

reflect the credible intervals explicitly estimated by the GP Progression Model. Variability of the

topological profile parameters under bootstrapping with 100 samples are shown in brackets. The

reported p-values and effect sizes (in braces) are relative to the null hypothesis of b ¼ 0 aside from

the term associated with the constant progression, computed via permutation testing and Bonfer-

roni-corrected for multiple comparison across the set of network metrics. All p-values were found

<0.01 apart from the inverse degree for AD, for which p=0.048. Supplementary file 1 - Table S1

shows the topological profiles for all 82 brain regions; results remain consistent. Supplementary file

1 - Table S2 shows the topological profiles for two subsets of the HA cohort, age-matched with the

AD and PPMS cohorts, as compared to topological profiles for the whole HA cohort; results remain

consistent.

Topological profiles match disease progression better than any single
descriptor
The third row of Figure 2 shows predicted atrophy progression using the best-matching single topo-

logical descriptor. Overall, the combinations of descriptors (Figure 2, second row) match the data

(Figure 2, first row) more closely than the single best-fitting descriptor (Figure 2, third row). For

example, according to the topological profile prediction, the parietal lobe is involved in the early

stages of AD, in agreement with the data, while it appears to be involved at a later stage, according

to the single best-matching descriptor (network proximity, underlined in Table 1), which also

Table 1. Weights of the topological profiles of the three cohorts.

The table reports the weights for each network metric, grouped per topological descriptor. Credible

intervals for the weights are given in parentheses. Bootstrapping variation is shown in square brack-

ets. Bonferroni-corrected p-values and effect size for the permutation testing of the null hypothesis

are shown in braces. In bold, the weights that have been used to compute the topological profiles.

Topological descriptor Network metrics AD PPMS HA

Betweenness centrality 0.21 (0.17)
[0.22 (0.18)]
{0.01 (2.85)}

0.10 (0.08)
[0.11 (0.08)]
{0.01 (2.72)}

0.09 (0.06)
[0.07 (0.05)]
{0.01 (3.16)}

Centrality Closeness centrality 0.01 (0.02)
[0.04 (0.04)]
{0.01 (2.90)}

0.11 (0.11)
[0.12 (0.12))]
{0.01 (2.34)}

0.03 (0.05)
[0.04 (0.04)]
{0.01 (1.79)}

Weighted degree 0.03 (0.03)
[0.02 (0.02)]
{0.01 (3.10)}

0.07 (0.05)
[0.07 (0.05)]
{0.01 (2.96)}

0.13 (0.09)
[0.11 (0.07)]
{0.01 (2.78)}

Clustering coefficient 0.19 (0.11)
[0.21 (0.12)]
{0.01 (3.32)}

0.14 (0.05)
[0.14 (0.06)]
{0.01 (4.52)}

0.10 (0.07)
[0.08 (0.06)]
{0.01 (2.97)}

Segregation Inverse degree 0.05 (0.06)
[0.05 (0.05)]
{0.05 (0.26)}

0.17 (0.12)
[0.16 (0.11)]
{0.01 (3.43)}

0.01 (0.01)
[0.01 (0.01)]
{0.01 (5.31)}

Inverse clustering 0.01 (0.03)
[0.05 (0.04)]
{0.01 (1.90)}

0.32 (0.22)
[0.36 (0.24)]
{0.01 (2.82)}

0.01 (0.01)
[0.01 (0.02)]
{0.01 (2.01)}

Network proximity Shortest path 0.65 (0.39)
[0.54 (0.35)]
{0.01 (3.62)}

0.06 (0.06)
[0.07 (0.06)]
{0.01 (2.48)}

0.01 (0.04)
[0.01 (0.02)]
{0.01 (1.48)}

Cortical proximity Spatial distance 0.06 (0.08)
[0.10 (0.06)]
{0.01 (2.14)}

0.22 (0.14)
[0.21 (0.18)]
{0.01 (3.22)}

0.64 (0.38)
[0.54 (0.32)]
{0.01 (3.46)}

Constant progression Constant term 0.07 (0.02)
[0.12 (0.03)]
{0.01 (4.01)}

0.08 (0.04)
[0.10 (0.05)]
{0.01 (3.56)}

0.19 (0.09)
[0.18 (0.12)]
{0.01 (3.58)}
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underestimates the involvement of the subcortical areas. Similarly in PPMS, the topological profile

prediction reproduces the subcortical involvement better than the best-fitting single descriptor (seg-

regation – inverse clustering). In HA, the topological profile prediction shows involvement of the

temporal and frontal lobes, as does the atrophy pattern, while the strongest single descriptor (corti-

cal proximity) underestimates subcortical involvement and overestimates parietal involvement. Fur-

ther, we note that topological profiles explain variance in the data better than the best-fitting single

descriptors. Indeed, in the AD cohort, the topological profile explains 82% of the variance, with the

constant term explaining just 6%, in contrast to 51% explained by network proximity. In the PPMS

cohort, the topological profile explains 83%, the constant term 7%, and inverse clustering 25%. Simi-

larly, in the HA cohort the topological profile explains 88%, the constant term 16%, and cortical

proximity 64%. To quantify and compare how well the topological model predictions match the

data, we also calculate the Akaike Information Criterion (AIC), which penalizes model complexity

(Maaten and Hinton, 2008). The topological profiles always provide lower AIC scores than the best-

fitting single descriptor model (see Supplementary file 1 - Table S4), thus explaining the data better

without overfitting. For full details please refer to the Materials and methods section.

Individual profiles group around cohort profiles and separate in
topological space
Figure 3 plots the cohort-level topological profiles and the individual topological profiles on differ-

ent topological spaces, for different groups of individuals. Personalized topological profiles come

from fitting the best combination of network metrics to individual progression rates. The GP Pro-

gression Model provides individual time parameters positioning the individuals along the estimated

progression and thus enables the estimation of individual progression rates with respect to the

global disease progression (see Materials and methods: Personalized topological profiles). We con-

sider a 5D topological space spanned by each of the five descriptors we consider (centrality, segre-

gation, network proximity, cortical proximity and constant progression). The position of a particular

topological profile within this space has coordinates that are the sums of the weights of the network

metrics corresponding to each descriptor. The ternary plots in Figure 3(a), (c) and (e) show the dis-

tribution of individual profiles colored according to the cohort to which the individual belongs (red

for AD, green for PPMS, blue for HA). The position corresponds to the relative Euclidean distances

of the individual profile from each cohort-level profile in the 5D topological space. Thus, the corners

correspond to exact matches with one of the cohort profiles, while points at the center of the trian-

gle are equidistant to all three cohort-level profiles. Individual profiles that are closer to the profile

of another cohort are highlighted as black diamonds with border color reflecting the true cohort; we

refer to these individuals as ‘outliers’. Figure 3(b), (d) and (f) show projections of the 5D topological

space to 2D using t-Distributed Stochastic Neighbor Embedding (tSNE: Zhou et al., 2012), which

visualizes high dimensional points in a low dimensional space in a way that retains pairwise similarity

with high probability, that is most points that are close/distant in the 5D space are close/distant in

the 2D visualization. Thus, while the global shapes of the distributions of points have limited inter-

pretation, disconnected groups of points in the tSNE plot reflect separation in the native space.

Each tSNE plot shows the cohort-level topological profile from each full cohort (big stars), the varia-

tion of the cohort-level topological profile under bootstrap resampling (small stars), and each indi-

vidual topological profile (dots).

Figure 3(a) and (b) show the plots for topological profiles computed using the GP Progression

Model. They include points for only disease-diagnosed individuals in the disease cohorts (AD or MCI

in the AD cohort; PPMS-diagnosed in the PPMS cohort; excluding controls in both), but all individu-

als from the HA cohort. Figure 3(c) and (d) show only the controls from the AD and PPMS cohort,

as well as all the HA cohort, also using the topological profiles obtained from the full temporal tra-

jectories. Figure 3(e) and (f) show the same individuals as Figure 3(a) and (b) but using topological

profiles derived from only late-stage patient data, mimicking current standard models, which ignore

disease progression; see Supplementary file 1: Late-stage atrophy modeling. Supplementary file

1- Table S3 shows results using random networks to show that the separation is genuinely driven by

the underlying structural connectivity.

Figure 3(a) and (b) show that (i) the cohort topological profiles are consistent under bootstrap

cross-validation, (ii) the three cohorts separate well in topological space, and iii) individual profiles

group around cohort profiles.
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Figure 3(c) and (d) and Supplementary file 1- Table S4 confirm that the separation observed in

Figure 3(a) and (b) is due to disease-related information, and not to differences in MRI centres, MRI

scanner or acquisition protocol, as the three groups of healthy controls show weaker separation than

the distinct disease groups.

Matching progression pattern defines profile better than late-stage
atrophy alone
Figure 3(e) and (f) show that when using only late-stage atrophy to identify topological profiles: i)

the cohorts separate less strongly than using the DPM topological profiles (see Supplementary file

1- Table S2); and ii) the rate of assignment of AD and PPMS individual profiles to the corresponding

cohort profile is lower than using GP Progression Model-driven topological profiles and with a

greater fraction of outliers (see Table 3). Both observations suggest that late-stage information alone

is not sufficient to provide distinct topological profiles.

Table 2 shows the weights for the topological profiles when using late-stage data. We observe

that, with respect to the topological profiles estimated using the GP Progression Model (Table 1),

the centrality components in AD and HA are decreased (from 40% to 25% and from 25% to 15%,

respectively), including an increase in uncertainty for all the estimates. In HA, we also note an

increase in the constant propagation term (from 15% to 30%), which may be explained as a

Figure 3. Individual profiles are specific for each neurological condition. Red indicates AD individuals, blue indicates HA and green is PPMS. Panel (a)

shows ternary plot of the individual profiles, obtained via the GP Progression Model, for AD+MCI-diagnosed individuals, PPMS-diagnosed individuals,

and HA individuals plotted according to the distance from the cohort-level profile; corners are cohort-level profiles. Outliers of each cohort are

highlighted (identified with diamonds); (b) shows a 2D representation of the topological profiles in (a), using tSNE; big stars represent the cohort

profiles and small ones the bootstrapped cohort-profiles; (c) ternary plot using GP Progression Model -driven profiles for only healthy control

individuals in the AD and PPMS cohorts, and HA individuals; (d) tSNE plot of data in (c); (e) ternary plot of the individual profiles for AD+MCI-

diagnosed, PPMS-diagnosed, and HA individuals, estimated from only late-stage data; (f) tSNE plot for the topological profiles of data in (e).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Longitudinal information for the study cohort (AD: 1713 individuals, HA 5463 individuals, PPMS 64 individuals).
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compensatory effect for the decrease of the other weights, as the constant propagation term is anal-

ogous to the intercept in linear regression – for details see Materials and methods section.

Table 3 is a confusion matrix of classification rates for subject assignments: without parentheses

are the rates for assignment using the GP Progression Model (using patient data only — no con-

trols); numbers in parentheses are the rates when using late-stage information (patients only). These

confirm that superior classification rates come from using GP Progression Model driven profiles.

Alzheimer’s disease individuals that exhibit individual profiles closer to
the healthy aging topological profile perform better in cognitive tests
Figure 3(a) identifies 159 AD-cohort outliers (130 MCI, 29 probable AD) closer to the HA cohort-

level profile, out of 1312 MCI+AD patients. We analyzed clinical and demographic information for

the AD outliers with respect to the rest of the AD cohort (see Supplementary file 1 Table S5a). An

ANOVA 1-way test between the two groups was performed and differences were found in MMSE,

where the outliers exhibit a higher MMSE score (27.6 ± 1.2 vs 26.1 ± 1.7). Slight differences were

found in the Clinical Dementia Rating Scale, with outliers scoring lower (1.8 ± 0.7 vs 2.1 ± 0.3). Both

results show that the outliers have reduced cognitive deficits compared to inliers, on average. Fur-

ther information on the ANOVA results is provided in the Supplementary file 1 Table S5a. The

same analysis performed on the outliers defined by late-stage-driven topological profiles did not

report any significant differences between the groups, suggesting that outliers defined using the GP

Progression Model-driven topological profiles depart more genuinely from the disease cohort and

phenotype of typical amnestic AD; see the Supplementary file 1 Table S6a).

Healthy ageing individuals that exhibit individual profiles closer to the
AD topological profile show signs of prodromal dementia
Figure 3(a) identifies 358 of 5463 HA individuals closer to the AD cohort profile. An ANOVA 1-way

test between these outliers and the rest of the HA group found differences in MMSE, where the out-

liers exhibit a lower MMSE score (27.7 ± 0.8 vs 28.0 ± 0.6); and a difference in age, with the outliers

being older (70.5 ± 10.1 vs 64.5 ± 9.8). No significant difference in gender or APOE status (see

Supplementary file 1 Table S5c) was found. In order to investigate whether the increased cognitive

deficit in the HA outliers indicates an actual prodromal phase of dementia, or is just an age-related

effect, we analyzed the incidence, in the outlier group, of the individuals that were healthy at base-

line, but developed dementia after 2–4 years (see Materials and methods: Participants - HA). Of

those 148 individuals, 105 reside in the HA-AD outlier group, which thus contains 70% of the individ-

uals with prodromal dementia; in contrast the non-outlier group consists of only 5% prodromal

dementia cases. The same analysis performed on the outliers defined by late-stage-driven topologi-

cal profiles reports only a group difference in age with older outliers (65.2 ± 10.9 vs 60.0 ± 7.0). No

other significant differences were found (see Supplementary file 1 Table S6c).

Table 2. Weights of the topological profiles of the three cohorts when using only late-stage atrophy data are more uncertain and

overlap more.

The table reports the weights for each network metric, grouped per topological descriptor.

Topological descriptors Network metrics AD PPMS HA

Betweenness centrality 0.15 (0.11) 0.11 (0.09) 0.05 (0.02)

Centrality Closeness centrality 0.01 (0.03) 0.06 (0.07) 0.01 (0.02)

Weighted degree 0.03 (0.04) 0.11 (0.08) 0.09 (0.05)

Clustering coefficient 0.07 (0.10) 0.11 (0.15) 0.03 (0.02)

Segregation Inverse degree 0.06 (0.06) 0.12 (0.09) 0.06 (0.06)

Inverse clustering 0.09 (0.08) 0.25 (0.22) 0.01 (0.04)

Network proximity Shortest path 0.30 (0.22) 0.05 (0.05) 0.02 (0.04)

Cortical proximity Spatial distance 0.12 (0.09) 0.15 (0.09) 0.15 (0.09)

Constant progression Constant term 0.04 (0.05) 0.10 (0.07) 0.33 (0.21)
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Primary progressive multiple sclerosis outliers show no significant
differences with the rest of the group
We also analyzed PPMS with respect to both AD and HA: the analysis returned 53 AD individuals

closer to PPMS; 1 PPMS individual closer to AD; 13 PPMS individuals closer to HA and 100 HA indi-

viduals closer to PPMS. No significant differences were found between any subgroups, for any com-

parisons: we analyzed age, gender, expanded disability status scale (EDSS) and disease duration

when looking at PPMS outliers in AD or HA; age, gender, APOE4 and MMSE score when looking at

HA outliers in PPMS; age, gender, years of education, MMSE, ADAS-Cog, APOE4, CDRSB, AV45,

when looking at AD outliers in PPMS. Details can be found in Supplementary file 1 Table S5b). The

same analysis on late-stage-driven topological profiles also returned no significant differences

(Supplementary file 1 Table S6b).

Features derived from the topological profile correlate with clinical
features
Finally and more generally, we analyzed features extracted from topological profiles, in particular,

the distance of individual profiles from the cohort profile, and show that they correlate negatively

with individual cohort-specific clinical features. Specifically, MMSE for the AD cohort (R = 0.11,

p<0.01); EDSS for PPMS (R = 0.68, p=0.07); and age for HA (R = 0.32, p<0.01).

Discussion
We have introduced a novel method to estimate cohort and individual-level topological profiles of

neurodegeneration using computational disease progression models in combination with imaging

data sets. The profiles give new insight into the relationship between brain connectivity and the pro-

gression pattern of neurodegeneration. We demonstrate the ideas using three cohorts representing

different neurological conditions: AD, PPMS, HA. We showed that combinations of topological

descriptors explain observations better than any individual descriptor and that the combinations rep-

resentative of each condition, despite some commonality as suggested in Soto and Pritzkow

(2018), Jucker and Walker (2018) and Fu et al. (2018), differ substantially both at the cohort and

individual level. We emphasize that these differences go beyond simple observations that the pat-

tern of atrophy accumulation is different in these three cohorts, which could arise simply from equiv-

alent spreading mechanisms from different epicentres; our results go further by strongly suggesting

distinct modes of dependence of the pathological spread on the underlying connectivity. We also

show that using the full disease time-course, estimated via a GP Progression Model (Desikan et al.,

2006) produces better-defined topological profiles than using only late-stage atrophy. This high-

lights a key weakness in previous state-of-the-art results using late-stage atrophy alone, which can

be ameliorated using recent advances in disease progression modeling. Further, we retrieved signifi-

cant correlation between features of the topological profiles and individual clinical or demographic

features, suggesting potential clinical utility of the topological profile. Finally, we showed that the

outliers in the AD-HA comparison display characteristics that align them with the other cohort, pro-

viding evidence that our topological profiles reflect underlying disease processes, and indicating

potential use of the topological profile to highlight disease risk.

Table 3. Confusion matrix of classification rates for individuals’ assignment to each cohort by matching individual topological profiles

to cohort-level topological profiles.

Without parentheses: results using full GP Progression Model -driven topological profiles. Within parentheses: results using topologi-

cal profiles estimated from only late-stage data. Higher numbers are better in diagonal entries (correct assignment), and lower num-

bers are better in off-diagonal entries (incorrect assignment).

AD PPMS HA

AD 84% (57%) 4% (9%) 12% (34%)

PPMS 2% (16%) 68% (45%) 29% (38%)

HA 7% (14%) 2% (12%) 91% (74%)
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As discussed in the introduction, one key implication here (as in previous literature Raj et al.,

2012; Raj et al., 2015; Seeley et al., 2009; de Haan et al., 2012) is that graph-theoretic measures

may associate with different mechanisms of disease spread in neural networks. Specifically, centrality

represents nodal stress (vulnerability of brain hubs), segregation trophic failure (vulnerability of iso-

lated regions), network proximity transneuronal spread of a prion-like agent along network connec-

tions, and cortical proximity unguided diffusive propagation (Zhou et al., 2012). While we draw on

these potential links in the following sections, it is important to note that the links between the

mathematical abstraction and the biological mechanisms are simplistic, and graph-theory metrics do

not fully capture or explain the range of potential spreading mechanisms.

The centrality component in AD topological profiles becomes apparent
when taking into account the temporal evolution of atrophy
The AD topological profile identified here supports recent results that identify neuronal distance

from epicentre (or trans-neuronal spread) as the principal topological descriptor of neurodegenera-

tion in AD (Jucker and Walker, 2018; Jucker and Walker, 2013; Cope et al., 2018; Raj et al.,

2015; Weickenmeier et al., 2019). However, both cohort- and individual-level profiles also show a

substantial additional component of neurodegeneration due to centrality metrics — vulnerability of

brain network hubs. This component has not clearly been highlighted previously, because a) it is less

apparent in a topological profile estimated from only late-stage atrophy data, and b) it is suppressed

when using the previous single-descriptor approach. We found contrasting importance of centrality

metrics between full-disease-course and end-stage-only profiles. This might arise from metabolic

demand increasing primarily during early degeneration so that hub-vulnerability drives early phases

of the progression pattern (Alladi et al., 2007), while neuronal distance from the epicentre domi-

nates later stages. This finding might also explain some aspects of the biological heterogeneity of

AD, which produces high variance in atrophy patterns across individuals. In particular, the early cen-

trality component of the topological profile suggests that pathology may start around local hubs,

which is consistent with the focal presentation of atrophy in atypical Alzheimer’s diseases such as

posterior cortical atrophy or progressive aphasia (Du, 2006; Mendez et al., 2002; Barnham et al.,

2004). Once established, each disease then spreads through the same broad networks, leading to

syndromic convergence in advanced stages of AD.

Similarly, in HA and PPMS, hub vulnerability appears as a significant component only when con-

sidering the full trajectory rather than only late-stage atrophy. This may suggest that activity-depen-

dent mechanisms, such as oxidative stress (Cagnin et al., 2001), microglial activation

(Hickman et al., 2018; Chiaravalloti and DeLuca, 2008), neurovascular dysfunction

(Sweeney et al., 2018) or ‘virtual hypoxia’ (Trapp and Stys, 2009) influence early brain loss across a

range of neurodegenerative conditions.

More generally, the differences we observe between full-disease-course and end-stage-only pro-

files emphasize the importance of considering the full temporal trajectory in assessing the likelihood

of potential propagation mechanisms.

Degree of alignment of individual profiles with cohort profiles informs
on patient status
Our results indicate that departures of individual profiles from that of the corresponding cohort may

signal abnormality with respect to their cohort, while alignment with another cohort-level profile

may correspond to clinical features of that other cohort. For example, the AD individuals with a

topological profile close to the HA cohort-level profile show on average lower cognitive deficit than

the full AD cohort. On the other hand, HA individuals with topological profiles that tend towards the

AD cohort-level profile exhibit reduced MMSE score, suggesting cognitive impairment; also, a sub-

stantial proportion (70%) of the HA prodromal-dementia individuals (who developed dementia in 2–

4 year follow-up) lie in the outlier group, suggesting evidence of neurodegenerative mechanisms

consistent with AD. We emphasize again that we identify these outliers using the topological

descriptors that explain the atrophy pattern, and not on the atrophy pattern itself, with the intention

of highlighting individuals showing abnormal mechanisms of pathology propagation with respect to

their cohort.
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We found no significant difference in clinical features between PPMS outliers, tending towards

either AD or HA, compared with the rest of the PPMS group: topological profiles seem to identify

differences among PPMS subjects that are invisible to the available demographic and clinical fea-

tures (age, gender, EDSS and diseases duration). However, sample sizes are low (N = 1 PPMS-AD

outlier; N = 13 PPMS-HA outliers). Further investigation on a larger cohort of progressive MS sub-

jects, as well as with a broader class of clinical features, may clarify whether the variation we observe

in topological profiles arise from spurious effects, or are genuinely informative on the clinical status

of the outliers beyond what the available clinical features can identify. For example, future studies of

older and longer-term PPMS patients could test the hypothesis that individual topological profiles

may inform on co-morbidities, for example for an MS-patient who shows signs of dementia, their

profile position with respect to the AD cohort profile may inform on whether the dementia comes

from MS-related neurodegeneration or AD comorbidity. However, we cannot test this hypothesis

here, as our PPMS cohort are ‘early’ PPMS (they were recruited to this study within 5 years of diag-

nosis), and no subject reported dementia as would be expected (Maier-Hein et al., 2017), although

a detailed cognitive assessment was not performed, this agrees.

Neurodegeneration in AD and PPMS is not simply an acceleration of
the aging process
Overall, our results suggest that neurodegeneration in AD and PPMS is not simply an acceleration of

the aging process, but that the two diseases have distinct topological profiles of neurodegeneration,

which differ from those of HA. The cohort and individual-level topological profiles we identify for AD

and PPMS are clearly distinct from one another. The AD topological profile is a combination of cen-

trality and network proximity, while the PPMS profile has diverse contributing mechanisms including

centrality, segregation and cortical proximity, suggesting that many different processes are at play.

Also, both separate from the HA topological profile, which has a strong component of both the cor-

tical proximity and the constant propagation mechanisms, suggesting relatively uniform loss across

the brain that is not linked to any particular brain-connectivity feature.

Further, we note that we have regressed out the effects of ageing in the AD and PPMS cohort in

order to minimize the effects of the ageing process on disease models. Nevertheless, some compo-

nents of ageing might still appear in the model for both, which is one key reason for including the

HA model for comparison.

These observations underline the idea that mechanisms, in addition to actual atrophy patterns,

are distinct in these diseases from those underpinning normal aging.

Future work
Here, we provide a proof of concept of the idea of topological profiling through image-analysis and

temporal disease progression modeling, and a demonstration of its potential utility. Multiple oppor-

tunities arise for future refinements of the methods, as well as extensions and applications of the key

ideas.

Methodologically, several steps in the processing pipeline can limit the accuracy of the network

metrics in representing neurodegenerative mechanisms. For example, structural connectome estima-

tion using tractography is prone to false positive and negative connections (Thomas et al., 2014;

Petersen et al., 2017) that can influence subsequent predictions. Nevertheless, tractography does

reliably recover at least many of the major known anatomical connections sufficiently well to high-

light broad differences in atrophy patterns associated to the different mechanisms.

Anatomically constrained probabilistic tractography coupled with SIFT-ing should provide more

accurate predictions than deterministic tractography (Thomas et al., 2014; Descoteaux et al.,

2009; Tsai, 2018; Daducci et al., 2016; Fornari et al., 2019), but future work might consider better

ways to mitigate errors for example by quantifying uncertainty in tractography output.

Here, we take an average connectome over multiple young and healthy individuals as the sub-

strate for pathology propagation. By doing so, we do not account for any influence of the pathology

on the connectome itself (Oxtoby et al., 2018), as some other models attempt to Iturria-

Medina and Evans (2015); Fornito et al. (2015); Oxtoby et al. (2018); Zeighami et al. (2015);

Powell et al. (2018). However, we believe this to be a reasonable anatomical reference of a ‘pure’

underlying substrate of propagation to investigate grey matter loss and decide to avoid deliberately
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the additional complexity of white matter disruptions, which are not well understood and would

complicate the model substantially. This decision is also supported by recent results in AD showing

that the choice of connectome (young and healthy or subject-specific) does not significantly impact

the predictive ability of a model for trans-synaptic transmission of toxic proteins (Acosta et al.,

2018). However, future models could approximate reductions of connectivity arising from white mat-

ter damage commensurate with grey-matter atrophy, but this requires a clear picture of the interac-

tion of such processes, for example from disease progression models of regional grey-matter

atrophy and white-matter integrity. We believe using the healthy connectome as the substrate for

propagation is a sensible first-order approximation.

One major advantage of our approach for evaluating topological descriptors is that it considers

group-level longitudinal information on atrophy rather than considering only late-stage atrophy pat-

terns. Our method uses each network metric to obtain a scalar value at each graph node that pro-

vides a template of the rate of pathology accrual at that node compared to others, and then

compares to rate-of-change of atrophy evolution as estimated by the GP Progression Model. Future

work may extend the idea by accounting for variable change over time, which will need to compare

the full temporal evolution of atrophy to the full temporal evolution induced by each topological

descriptor. One additional caveat of using the GP Progression Model is that the model captures the

trajectory of change in biomarker values rather than underlying pathology; differences among bio-

marker accuracy (e.g. higher noise in volume measurements of smaller regions) can make the order

of biomarker change depart from the order of underlying pathological change, although we expect

such effects tend to be small with our processing pipeline – see Fonteijn et al. (2012) and

Hinrichs et al. (2011) for further discussion.

Our approach does not account for heterogeneity within cohorts. In addition to variation in the

structural connectome discussed above, the epicentre for disease propagation may vary among

patients in a particular disease class and a number of recent works explore methods for per-subject

epicentre selection (Young et al., 2014; Young et al., 2018). Here, we estimated a single cohort-

level epicentre as the most atrophied region for each data set, and each reflected common knowl-

edge of brain tissue loss in AD, PPMS and HA. Our epicentres broadly agree with (Zhou et al.,

2012), who found that individually selected epicentres in a number of neurodegenerative diseases

are always seated in or near the most atrophied region. Recent data-driven approaches (Mezias and

Raj, 2017) further reveal within-cohort heterogeneity of temporal trajectories, which our current

approach does not accommodate, but such advances provide great potential for future work to

focus topological profiling on more homogeneous subgroups and to explore the variability of topo-

logical profiles among different disease subgroups. Indeed, we believe application to broader

cohorts, as for instance generic progressive MS including both primary and secondary (which would

be more numerous) would require better identification of distinct subgroups than the traditional MS

classifications (clinically isolated syndrome, relapsing remitting MS, and primary and secondary pro-

gressive MS), and methods such as SuStain (Mezias and Raj, 2017) would offer a way to identify

within-cohort subtypes for better topological profile estimation. As concerns applications to prodro-

mal phases of diseases – an example being radiologically isolated syndrome for MS – future work

will be devoted to build models of the whole neurodegeneration process within specific diseases

and their subtypes defined by distinct trajectories of pathological change, which might be used for

instance for discriminating subjects that convert to degeneration from others that do not, thereby

informing treatment and care choices.

The ideas we propose here extend to a much larger range of diseases and disease subtypes and

offer a new and unique tool to exploit the full power of large imaging data sets in exposing mecha-

nisms of disease aetiology and propagation. With further development and experiments, topological

profiles may also provide useful information in the clinic. For example, AD-like HA outliers may be

considered at risk for AD and decisions could be informed by this, including patient management

(more frequent visits to monitor the patient) and recruitment into clinical studies/trials.

The underlying models of propagation remain simplistic and a great many alternative descriptors

and mechanisms could easily be included, such as propagation via functional networks (Zhou et al.,

2012; Cope et al., 2018), or different kinds of tractography to represent intra and extra-axonal

propagation (Iturria-Medina et al., 2017; Iturria-Medina et al., 2018; Oxtoby et al., 2018). Sim-

plicity of the models and limitations of processing steps is important to bear in mind while interpret-

ing results, and validation, for example against histological analysis in animal models (Eshaghi et al.,
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2014), is an important future target to establish the extent to which mechanistic information inferred

in this way matches low-level observations of molecular propagation.

Materials and methods
Our pipeline for creating topological profiles in a neurodegenerative condition is the following.

1. Generate an average structural connectome from young healthy data.
2. Pre-process the cohort data to adjust for nuisance variables and generate the longitudinal

data for regional atrophy and topology, relative to healthy controls.
3. Build the DPM and topological profile.

We now describe the data and these steps in detail.

Data description
Participants – AD
The data used in the preparation of this article were obtained from the Alzheimer’s disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI

has been to test whether serial Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET), other biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. For up-to-date information, see www.adni-info.org.

We collected longitudinal measurements for all the available ADNI 1/GO/2 individuals with at least

one ‘quality control’ flagged 3D-T1 MRI scan. Repeated T1-weighted structural MRI images were

acquired at 3T machines across multiple centers according to a harmonized protocol. Longitudinal

FreeSurfer was used to align images from multiple time-points according to subject specific median

templates, in order to avoid temporal bias. Subject with no available diagnosis were discarded, thus

leaving us 1713 subjects, with ‘HC’, ‘MCI’ or ‘AD’ diagnosis. We collected longitudinal FreeSurfer

5.1 vol data on all the GM and subcortical regions from ADNIMERGE.csv. For information on scan-

ning protocols and segmentation algorithms see www.adni-info.org. The subjects included in our

analysis are 1713; the mean (std) age of the cohort is 73.9 (7.2) years. The overall scans are 6670; the

average (std) time between scans is 2.4 (1.8) years. More information is in Figure 3—figure supple-

ment 1 and Supplementary file 1- Table S7.

Participants – PPMS
This was a retrospective study of 64 participants, studied at the UCL Queen Square Institute of Neu-

rology in London. The participants include 44 individuals with primary progressive multiple sclerosis

(PPMS) and 20 healthy controls (HC). We collected longitudinal FreeSurfer 5.1 volumetric data on all

the GM and subcortical regions. For information on scanning protocol, segmentation algorithms,

please refer to Hofman et al. (2015). The longitudinal data set used for this study consisted in 64

individuals; the mean (std) age of the cohort is 41.6 (10.2) years. The overall scans are 244 scans; the

average (std) time between scans is 4.0 (1.5) years. More information are in Figure 3—figure supple-

ment 1 and Supplementary file 1- Table S7.

Participants – HA
The data used in the preparation of this article were obtained from The Rotterdam Scan Study

(Ikram et al., 2015; Veraart et al., 2016). The Rotterdam Study is a prospective cohort study ongo-

ing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endo-

crine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngology, locomotor, and

respiratory diseases. Initially, in 1995 and 1999, random subsamples of participants from the Rotter-

dam Study underwent neuroimaging, whereas from 2005 onwards brain MRI has been implemented

into the core protocol of the Rotterdam Study. We excluded individuals with prevalent dementia at

study entry, and individuals presenting cortical infarcts on the MRI. The study contains 148 individu-

als that would develop dementia in the 2–4 years follow-up(s). We leave them in the study as we are

interested to model their individual topological profiles with respect to the topological profile of the

cohort-level. We collected longitudinal FreeSurfer 5.1 volumetric data on all the GM and subcortical

regions. For information on the scanning protocols and segmentation algorithms see Veraart et al.
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(2016). The longitudinal data set used for this study consisted in 5463 individuals; the mean (std)

age of the cohort is 64.8 (10.8) years. The overall scans are 11627 scans; the average (std) time

between scans is 5.3 (1.1) years. More information is in Figure 3—figure supplement 1 and

Supplementary file 1- Table S9.

Data pre-processing to obtain model inputs
On each data set of volumetric GM and subcortical regions separately, we performed three steps:

1. Adjustment for nuisance variables: we constructed a regression model for each region sepa-
rately with volumes as dependent variable and total intracranial volume, gender, and age (age
not included for the HA cohort) as independent variables.

2. Variable selection: from the original FreeSurfer Regions of Interest (ROIs) we discarded white
matter, brain stem, ventricular and cerebellar regions, leaving 82 ROIs. Then, we averaged the
(adjusted) volumes of each region from both hemispheres, obtaining 41 bilateral regions.

3. Z–scores computation: we computed z–scores against a control population. For the AD data
set, the control population was formed by the ‘HC’-diagnosed individuals; for the HA cohort it
was formed by the ‘Young’ individuals (those whose age is more than one standard deviation
less than the mean age); for the PPMS data set it was formed by the ‘HC’-diagnosed
individuals.

HCP participants
Data used in the preparation of this work were obtained from the MGH-USC Human Connectome

Project (HCP) database (ida.loni.usc.edu/login.jsp). The HCP project (Principal Investigators: Bruce

Rosen, M.D., Ph.D., Martinos Center at Massachusetts General Hospital; Arthur W. Toga, Ph.D., Uni-

versity of California, Los Angeles, Van J. Weeden, MD, Martinos Center at Massachusetts General

Hospital) is supported by the National Institute of Dental and Cranio-facial Research (NIDCR), the

National Institute of Mental Health (NIMH) and the National Institute of Neurological Disorders and

Stroke (NINDS). Collectively, the HCP is the result of efforts of co-investigators from the University

of California, Los Angeles, Martinos Center for Biomedical Imaging at Massachusetts General Hospi-

tal (MGH), Washington University, and the University of Minnesota. The data set consisted of 24

unique subjects: we collected raw high–resolution 3D T1–weighted and DTI of 24 age and gender–

matched subjects (age: 26, 50% female).

Connectome generation
Structural connectomes were generated using tools provided in the MRtrix3 software package

(http://mrtrix.org). The pipeline included (Oxtoby et al., 2018): DWI denoising (Andersson and

Sotiropoulos, 2016), pre-processing (Tustison et al., 2010) and bias–field correction (Modat et al.,

2014); inter–modal registration (Jeurissen et al., 2014); T1 tissue segmentation (Braak and Braak,

1995); spherical deconvolution (Smith et al., 2013; Tournier et al., 2010); probabilistic tractography

(Smith et al., 2012) utilizing anatomically-constrained tractography (Yeh et al., 2016), dynamic

seeding and SIFT (Tournier et al., 2010); T1 parcellation (Braak and Braak, 1995); robust structural

connectome construction (Bullmore and Sporns, 2009). Our anatomical connectome for each partic-

ipant is a weighted adjacency matrix that includes only inter-node connections across the 82 ROIs

consisting of cortical and subcortical gray-matter regions, excluding the cerebellum and brain stem.

The average structural adjacency matrix was computed by taking the mean over the subject-wise

matrices. Weights, or connection strengths, were normalized to [0, 1]. The inter-hemisphere average

is performed after the network metrics computation step (see below).

Mathematical modeling
Network metrics
We selected five different descriptors of graph topology (centrality, segregation, network proximity

cortical proximity and constant progression) and nine metrics across these categories

(Lehmann et al., 2013):

1. Centrality measures:
a. Weighted degree: the sum of the weights of the connections incident the node of

interest.
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b. Betweenness centrality: the number of shortest paths between any two nodes that pass
through the specific node.

c. Closeness centrality: the inverse of the path length between the node of interest and all
the other nodes.

d. Clustering coefficient: the proportion of triangular sub-networks formed by the node and
its neighboring nodes.

2. Segregation measures:
a. Inverse of weighted degree.
b. Inverse of clustering coefficient.

3. Network proximity:
a. Shortest path to epicenter.

4. Cortical proximity:
a. Spatial distance from epicenter.

5. Constant progression:
a. Constant term quantifying to what extent the rate of atrophy remains constant through-

out the progression.

Each network metric produces a scalar value for each node that indicates its vulnerability to

pathology relative to all other nodes. Each thus leads to a temporal progression pattern in which the

accumulation of pathology, for example the atrophy or rate of change of volume, is proportional to

that vulnerability (see Figure 4). In order to identify the epicenters needed to compute 3a) and 4a),

we selected, for each subject, the region with the highest z-scores of GM volumes (i.e. the ‘most

atrophied’ region) in the last follow-up MRI scan; the cohort-level epicenters are then, for each

cohort, the regions that most frequently appear as individual-level epicenters. They are the hippo-

campus (AD), the caudate (PPMS) and the insula (HA). These epicenters are supported by literature

in AD (Zhou et al., 2012; Abe et al., 2008), PPMS (Eshaghi et al., 2018a; Vinke et al., 2018) and

HA (Allen et al., 2002; Good et al., 2001; Kalpouzos et al., 2009; Tisserand et al., 2004;

Rubinov and Sporns, 2010).

We computed the first seven network metrics using the Brain Connectivity Toolbox (Daube-

Witherspoon and Muehllehner, 1986) in MATLAB, after appropriate normalization (weight_conver-

sion function). To compute the cortical proximity metric, which does depend on the structural con-

nections, we select the segmented structural MRIs in the HCP cohort, and measure the (average)

pairwise cortical distances between all the macro-regions’ barycenters (using the mris_pmake com-

mand in FreeSurfer). The constant progression metric, which also does not depend on the structural

connections, simply assigns a constant value to each region.

We note that the network metrics computing similar attributes of a graph such as centrality and

efficiency, or segregation and inefficiency, are not independent and in fact highly correlated produc-

ing strongly overlapping progression patterns. However, we include multiple network metrics for

certain topological descriptors to capture variability in the corresponding progression pattern that

fits within the definition of the descriptor.

Network metrics were computed on the average structural adjacency matrix formed of 82 ROIs,

and then averaged across hemisphere, obtaining an array of 9 metrics for each of the 41 symme-

trized regions v; g vð Þ ¼ g1 vð Þ; . . . ; g9 vð Þð ÞT , where we set g9 vð Þ ¼ 1 to describe the constant progres-

sion term.

GP progression model
Continuous Disease Progression Models (DPM) aim to estimate the long-term temporal pattern of

disease progression directly from short-term longitudinal data sets and to stage patients based on

individual observations. The problem is challenging, due to the lack of a well-defined temporal refer-

ence in longitudinal data sets: time of onset is usually unknown and rate of pathology accrual is

highly variable in most neurodegenerative conditions. DPM techniques typically tackle this problem

by assuming that each visit at which measurements are taken occurs at an unknown ‘disease time’,

the particular value of which for each individual subject is a hidden variable estimated while fitting

the set of trajectories. The disease-time axis parametrizes the natural evolution of the pathology

common to all individuals.

The models usually assume mixed effects, in which the long-term trajectories are the fixed effect

(represented by parametric or non-parametric functions), and the individual variations from the
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group-level trajectories are the random effects. Further, individual time reparametrization parame-

ters (also known as time warp parameters [Venkatraghavan et al., 2017] or disease scores

[Donohue et al., 2014; Jedynak et al., 2012]) are estimated by quantifying the individual positions

with respect to the estimated time-frame. Here, we use the GP Progression Model of

Desikan et al. (2006), which is a non-parametric Bayesian mixed effect model, to estimate long-

term trajectories of regional GM volumes on each data set (AD, PPMS and HA) separately. Figure 5

shows a pictorial example of the GP Progression Model combined with the topological profiles

procedure.

Figure 4. Temporal progression patterns (left-to-right) of different descriptors. For each descriptor (row), abnormality increases in a descriptor-specific

pattern. The magnitude of cumulative abnormality at a node is proportional to the color intensity. Red nodes are epicenters. (a) Centrality: node A is

affected first due to having the highest centrality, followed by node B, then C and D. (b) Segregation: node D is affected first due to having the highest

segregation, followed by C, then B and A. (c) Network proximity: nodes B and C are affected before D, because they are closer to the epicenter A

(along the connectivity network). (d) Cortical proximity: node B is affected first because of its spatial proximity to the epicenter A, then C and finally D.

Here edges are dashed as no information is needed from connectivity.

Garbarino et al. eLife 2019;8:e49298. DOI: https://doi.org/10.7554/eLife.49298 17 of 27

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.49298


Formally, if we represent by Xj t1ð Þ; . . . ;Xj t
j
K

� �� �

T the longitudinal measurements of the regional

GM volumes associated with each individual j at their t1; . . . ; t
j
K

� �

absolute time points (i.e. dates of

subject visit or subject’s age-at-visit), and consider all measurements obtained at a particular visit of

one individual to occur at a particular disease time tjk, where the mapping from absolute time t to

disease time t is via a subject-specific time reparametrization function, which here is just a simple

shift: tjk ¼ tjk þ dj, then the observations for subject j at a single time point t (indices omitted but

implied) can be modelled as a random sample from the GP Progression Model:

Xj tð Þ:¼ ðXj
1
ðtÞ; . . . ;Xj

V ðtÞÞ
T

¼ f tð Þþnj tð ÞþE:
(1)

Here, f tð Þ ¼ f1 tð Þ; . . . ; fV tð Þð ÞT is the fixed effect function modeling the longitudinal evolution of the

V GM volumes, and is modeled as a Gaussian Process; nj tð Þ ¼ n
j
1
tð Þ; . . . ;njV tð Þ

� �T
are the individual ran-

dom effects; and E¼ E1; . . . ;EVð ÞT is the observational noise. The model is described in detail in

Desikan et al. (2006) together with the optimization scheme to recover the probabilistic estimates

of the parameters for the fixed effect, the random effect, and the individual time reparametrization

Figure 5. A schematic representation of the mathematical modeling of the topological profiling with GP Progression Model. In the example here we

have three biomarkers/regions (represented in red (v ¼ 1), green (v ¼ 2) and blue (v ¼ 3)), and two topological descriptors (g and h). (a) The GP

Progression Model estimates temporal trajectories of biomarkers progression, along the disease time t. The unique maximum points of the derivatives

of the trajectories correspond to their maximal rate of change Y. (b) Two topological descriptors are computed for each region from anatomical

connectomes. They combine, column-wise, in the matrix S. (c) For each subject j, the GP Progression Model estimates a time-reparametrization which

shifts individual measurements to the disease time. For each biomarker, the speed of progression of subject j with respect to the cohort progression is

the value of the derivative of the biomarker progression at tj
~

, which represents the shift of the average age of the subject. (d) Topological profiles are

estimated via a linear model relating S and Y (for the cohort-level topological profile) or Y j (for the individual profiles).
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parameters. Identifiability of the model is ensured by enforcing monotonicity on the population-level

biomarker trajectories fv.

Fitting the model also provides an estimate of the highest rate of change of each biomarker dur-

ing the disease progression. That is the maximum of the derivatives of the estimated trajectories fv

along the disease time t:

Yv ¼max
t

f
0

v tð Þ; (2)

for each biomarker v 2 1; . . . ;Vf g. Existence and boundness of Yv is guaranteed by the finiteness of

the time-shifts, which is enforced by the smoothness of the Gaussian Process. Indeed, for each

subject j, dj defines the optimal shift of the data point on the temporal time axis. The estimates of

these positions must be compatible with the Gaussian Process describing the temporal trajectory

(Figure 2—figure supplement 2, 3 and 4). Gaussian processes are completely identified by the ker-

nel function (in our case a radial basis function - RBF), which prescribes the shape and smoothness of

the interpolating curve via its length-scale l and variance s. For this reason, the relative positions (i.e.

the time-shifts) of each individual are naturally bounded by the length-scale of the Gaussian process,

so the only compatible solutions are those with the time-shifts softly constrained to a finite range

determined by 2l. The monotonicity constraint on fv guarantees uniqueness of Yv for each v. The

model returns uncertainty on f , which can be projected to f 0 and thus Y.

Topological profile estimate
We estimate the topological profile b by identifying the unique combination of topological descrip-

tors that best matches the GP Progression. This means estimating the weights b from the linear

model

Y ¼ Sbþ "; (3)

where Y ¼ Y1; . . . ;YVð ÞT ; S collects the values of the metrics g vð Þ for every region v, that is

S¼ g 1ð Þ; . . . ;g Vð Þð ÞT ; and " is the noise. As a first step we normalize both Y and S to the range [0, 1].

We also enforce non-negativity of b, so that bn can be precisely interpreted as the weight with

which descriptor n contributes to the overall observed pattern of neurodegeneration Y. Our prob-

lem is then the one of estimating b such that:

b¼ argmaxb�0L Y;Sbð Þ; (4)

where L is the likelihood of the model, which assumes Gaussian noise, so that (4) becomes equiva-

lent to constrained least-squares minimization. We solve the problem via Expectation-Maximization,

which, in the positively-constrained least-squared case, has a simple closed form, and becomes an

iterative-multiplicative algorithm also known as ISRA (Daube-Witherspoon and Muehllehner, 1986;

Dempster et al., 1977).

Personalized topological profiles
For each subject, the GP Progression Model estimates a set of time-points tjk describing the sub-

ject’s measurements in the new disease time t as t
j
k ¼ tjk þ dj, where dj is the subject-specific shift. If

we define the subject temporal position in the disease time as the shifted average age tj
~

, where

tj
~

¼ tj
~

þ dj and tj
~

is the average age of subject j across age-at-visits, then we can compute the indi-

vidual speed of progression along the disease time as

Y j
v ¼ f

0

v tj
~� �

; (5)

for each biomarker v � 1; . . . ;Vf g. These values encode information on the individual rates of change

along the disease progression. We can then estimate the individual topological profile bj by identify-

ing the unique combination of topological descriptors that best matches the individual progression

as
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bj ¼ argmaxbj�0
L Y j

;Sbj
� �

; (6)

where Y j ¼ Y
j
1
; . . . ;Y

j
V

� �T
. As in the cohort-level framework, the problem can be solved, for each

subject j, via ISRA.

Model selection
In order to quantify the performances of the topological profiles progression against the single-best

fitting descriptor in reproducing the observed progression from the GP Progression Model, we com-

pute Aikake Information Criterion (AIC) for each model to balance error scores with model complex-

ity. We assume Gaussian noise and set AIC = 2N þ V log RSS
V

� �

, where N is the number of model

parameters, V is the number of data points (GM regions), and the RSS is the residual sum of squares

between the predicted outcome of the model and the data, that is
P

V

v¼1

Y � Sbð Þ2
� �

v
. The single-best

fitting descriptor choice has just one parameter, with trans-neuronal spread or proximity spread hav-

ing one additional parameter for epicenter selection. The topological profiles have one parameter

for each descriptor, plus one parameter for epicenter selection, minus one parameter as the weights

are normalized, that is as many parameters as the number of the descriptors. The AIC scores are

Supplementary file 1- Table S4.

Code availability
Code is available at: https://github.com/sgarbarino/mechanistic-profiles. (Garbarino, 2019; copy

archived at https://github.com/elifesciences-publications/mechanistic-profiles).

The software (BrainPainter) for coloring brain images as in Figure 2 is open-source and available

at: https://github.com/mrazvan22/brain-coloring.
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